Archiv der Kategorie Uncategorized

Journalists and Logic

The „Zeit“ titles „Die größte bekannte Primzahl ist gefunden“, in English „The biggest known prime number has been found“. The logic of this heading is so bizarre! The article is not saying much anyways.

06. Januar 2018 von mga010
Kategorien: Uncategorized | Schreibe einen Kommentar

A Geometric Problem

I found the following problem on my Google+ account: In the image below, the total length of the blue line segments is equal to the total length of the green line segments. The segments form an angle of 60° among … Weiterlesen

31. Dezember 2017 von mga010
Kategorien: Uncategorized | Schreibe einen Kommentar

Least Common Multiplier of First N Numbers

There is a famous result that is quite surprising if you see it the first time: The log of the least common multiplier of the first n integers is approximately n. The quotient converges to 1. Or to say it another … Weiterlesen

30. Juni 2017 von mga010
Kategorien: Uncategorized | Schreibe einen Kommentar

Computing a Special Sum

I recently found the following problem in my Google+ account: What is \(\dfrac{1}{2 \cdot 4} + \dfrac{1 \cdot 3}{2 \cdot 4 \cdot 6} + \dfrac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} + \ldots\) This kind of sum … Weiterlesen

18. Mai 2017 von mga010
Kategorien: Uncategorized | Schreibe einen Kommentar

Sensor Size and Image Quality

If you are confused about the effect the sensor size makes to your image quality you are not alone. In this post, I try to explain a good part of these problems. I try to do that without any math. But … Weiterlesen

20. Januar 2017 von mga010
Kategorien: Uncategorized | Schreibe einen Kommentar

Making GIF Animations

I fixed „makeanimations.e“ in EMT. The code for this is the following. >function f(z,z0) := (z-z0)/(conj(z0)*z-1); >function plotcircle(z,r,z0,color=black) … $t=linspace(0,2pi,500); w=f(z+r*exp(I*t),z0); $barstyle(„#“); barcolor(color); $hold on; polygon(re(w),im(w),0); hold off; $endfunction >function plotall (d,z0=0.5) … $fullwindow; setplot(1.05); clg; $plotcircle(0,1,0,lightgray); $plotcircle(0,1/3,z0,white); $c=exp(((0:5)/6+d)*2*pi*I)*2/3; $loop … Weiterlesen

09. Dezember 2016 von mga010
Kategorien: Uncategorized | Schreibe einen Kommentar

The Bayesian and the Frequentist – II

This is not immediately related to Bayesian statistics. But it is a good argument for the frequentistic approach. I met the problem in  a Youtube video, but the core of this problem is well known. The solutions are not always … Weiterlesen

20. Juli 2016 von mga010
Kategorien: Euler, Uncategorized | Schreibe einen Kommentar

A Problem of Logic

The Problem Recently, I stumbled across a very interesting problem. I closed the site and started to think about the solution. Therefore, I neither have a link nor the solution given on the page. Let us try our luck with … Weiterlesen

12. Juli 2016 von mga010
Kategorien: English, Uncategorized | Schreibe einen Kommentar

The Bayesian and the Frequentist – I

I think I write a series of postings about Bayesian statistics and the view that I take on it as a frequentist. Do not expect too much depth here. I am not a specialist in statistics. I just want to study … Weiterlesen

12. Juni 2016 von mga010
Kategorien: Uncategorized | Schreibe einen Kommentar

Numerical versus Symbolic Solutions

I did a short video about symbolic solutions versus numerical methods. The point is that a solution such as \(x=\left(\frac{\sqrt{5339}}{8\,3^{\frac{3}{2}}}+\frac{379}{216}\right)^{\frac{1}{3}}-\dfrac{2}{9\,\left(\frac{\sqrt{5339}}{8\,3^{\frac{3}{2}}}+\frac{379}{216}\right)^{\frac{1}{3}}}-\dfrac{1}{3}\) are not helpful, unless you are a number theorist. The solutions of equations of degree 5 are usually not available … Weiterlesen

03. November 2015 von mga010
Kategorien: Uncategorized | Schreibe einen Kommentar

← Ältere Artikel